The sine-Gordon equation and the trace method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L485
(http://iopscience.iop.org/0305-4470/19/9/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:32

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The sine-Gordon equation and the trace method

Zheng Weiming
Shanghai Institute of Computer Technology, Shanghai, People's Republic of China

Received 7 April 1986

Abstract

The trace method which has been proposed by Wadati and Sawada is applied to the sine-Gordon equation. The \boldsymbol{N} soliton solution is derived.

The trace method which has been applied to the Kdv [1], MKdv [2], KP [3] and some other equations [4] is useful for understanding these equations [1]. The N soliton solution and some other results of these equations have been derived through the trace method.

The present letter deals with an application of the trace method to the sine-Gordon equation as follows:

$$
\begin{equation*}
U_{x t}+\sin U=0 \quad U(x, t) \rightarrow \text { constant as } x \rightarrow \infty . \tag{1}
\end{equation*}
$$

Wadati and Sawada have pointed out that it is very difficult to solve the sine-Gordon equation by means of the trace method directly [2]. In order to avoid dealing with the transcendental non-linearity $\sin U$, it is convenient to re-express the equation in terms of $V=U_{x}, W=\cos U$, i.e.

$$
\begin{equation*}
V_{x t}=-W V \quad W_{x}=V, V \tag{2}
\end{equation*}
$$

Substituting the formal series

$$
\begin{align*}
& V=V^{(1)}+V^{(3)}+\ldots+V^{(2 n+1)}+\ldots \\
& W=1+W^{(2)}+V^{(4)}+\ldots+W^{(2 n)}+\ldots \tag{3}
\end{align*}
$$

into equations (2), we obtain a set of equations for $W^{(2 n)}$ and $V^{(2 n+1)}(n=0,1,2, \ldots)$:

$$
\begin{align*}
& W^{(0)}=1 \quad V_{x i}^{(1)}=-V^{(1)} \quad W_{x}^{(2)}=V_{t}^{(1)} V^{(1)} \\
& V_{x t}^{(3)}=-V^{(3)}-W^{(2)} V^{(1)} \\
& \vdots \tag{4}\\
& W_{x}^{(2 n)}=\sum_{r=0}^{n-1} V_{t}^{(2 r+1)} V^{(2 n-2 r-1)} \tag{5}\\
& V_{x t}^{(2 n+1)}=-\sum_{r=0}^{n} W^{(2 r)} V^{(2 n-2 r+1)}
\end{align*}
$$

We can solve the set of equations iteratively:

$$
\begin{aligned}
V^{(1)} & =4 \sum_{r=1}^{N} \Phi_{r}^{2}(x, t) \\
W^{(2)} & =-\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{\Phi_{m}^{2}(x, t) \Phi_{n}^{2}(x, t)}{\left(k_{m}+k_{n}\right)}\left(k_{m}^{-1}+k_{n}^{-1}\right) \\
V^{(3)} & =-4 \sum_{r=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \frac{\Phi_{r}^{2}(x, t) \Phi_{m}^{2}(x, t) \Phi_{n}^{2}(x, t)}{\left(k_{r}+k_{m}\right)\left(k_{m}+k_{n}\right)} .
\end{aligned}
$$

Here $\Phi_{n}=A_{n}(0) \exp \left(k_{n} x-t / 4 k_{n}\right)=\Phi_{n}(x, t), k_{n}$ are positive and distinct constants $A_{n}(0)$ are real or pure imaginary $(n=1,2, \ldots, N)$. We introduce an $N \times N$ matrix whose elements are given by $B_{m n}=\int_{-\infty}^{x} \Phi_{m}(y, t) \Phi_{n}(y, t) \mathrm{d} y=$ $\left[1 /\left(k_{m}+k_{n}\right)\right] \Phi_{m}(x, t) \Phi_{n}(x, t)$.

With the matrix $B, V^{(1)}, W^{(2)}$, and $V^{(3)}$ are expressed as

$$
V^{(1)}=4 \operatorname{Tr}\left(B_{x}\right) \quad W^{(2)}=2 \operatorname{Tr}\left(B_{x t}^{2}\right) \quad V^{(3)}=-4 \operatorname{Tr}\left(B_{x} B^{2}\right) .
$$

In general, we can prove that

$$
\begin{align*}
& V^{(2 n+1)}=4(-1)^{n} \operatorname{Tr}\left(B_{x} B^{2 n}\right) \tag{6}\\
& W^{(2 n)}=(2 / n)(-1)^{n-1} \operatorname{Tr}\left(B_{x t}^{2 n}\right) \tag{7}
\end{align*}
$$

satisfy equations (4) and (5). First, it is easy to see that

$$
\begin{equation*}
\operatorname{Tr}\left[\left(B^{2 n+1}\right)_{x}\right]=(2 n+1) \operatorname{Tr}\left(B_{x} B^{2 n}\right) . \tag{8}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& V^{(2 n+1)}=[4 /(2 n+1)](-1)^{n} \operatorname{Tr}\left[\left(B^{2 n+1}\right)_{x}\right] \\
& V_{x t}^{(2 n+1)}=[4 /(2 n+1)](-1)^{n}\left[\operatorname{Tr}\left(B^{2 n+1}\right)\right]_{t \times x} . \tag{9}
\end{align*}
$$

Now we make the following definitions.
(i) σ is a cyclic transformation, $\sigma(1,2, \ldots, 2 n+1)=(2,3, \ldots, 2 n+1,1)$.
(ii) T is an operator for a subscript variable, defined by $T\left(F\left(k_{r_{1}}, k_{r_{2}}, \ldots, k_{r_{2 n+1}}\right)\right)=$ $F\left(k_{r_{\sigma(1)}}, k_{r_{\sigma(2)}}, \ldots k_{\left.r_{\sigma(2 n+1)}\right)}\right)$.
(iii) S is an order symmetry operator defined by

$$
S=T^{1}+T^{2}+\ldots T^{2 n+1}
$$

Obviously, we have that
(1) S is a linear operator
(2) $S T \neq S, T S=S$ and
(3) if f is a function of the $(2 n+1)$ th subscript variable and $T(f)=f$, then $S(f)=$ $(2 n+1) f$ and $S(g f)=(S(g)) f$, where g is a function of the subscript variable.

From (8), we have

$$
\begin{equation*}
W^{(2 n)}=(2 / n)(-1)^{n-1} \operatorname{Tr}\left(B_{x t}^{2 n}\right)=4(-1)^{n-1}\left[\operatorname{Tr}\left(B_{x} B^{2 n-1}\right)\right]_{t} . \tag{10}
\end{equation*}
$$

In the following we calculate the right-hand side of equation (5) and simplify the expression by writing $1,2, \ldots, 2 n+1$ instead of $r_{1}, r_{2}, \ldots, r_{2 n+1}$:

$$
\begin{aligned}
&-\sum_{r=0}^{n} W^{(2 r)} V^{(2 n-2 r+1)} \\
&= 4(-1)^{n+1} \sum_{1} \sum_{2} \ldots \sum_{2 n+1} \\
& \times\left(1+2 \sum_{r=1}^{n}\left(k_{1}^{-1}+k_{2}^{-1}+\ldots+k_{2 r}^{-1}\right)\left(k_{2 r}+k_{2 r+1}\right)\right) \Phi_{1}^{2} \Phi_{2}^{2} \ldots \Phi_{2 n+1}^{2} \\
& \times\left[\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right) \ldots\left(k_{2 n}+k_{2 n-1}\right)\right]^{-1} \\
&= 94(-1)^{n+1} \sum_{1} \sum_{2} \ldots \sum_{2 n+1} \\
& \times\left(1+2 \sum_{r=1}^{x}\left(k_{1}^{-1}+k_{2}^{-1}+\ldots+k_{2 r}^{-1}\right)\left(k_{2 r}+k_{2 r+1}\right)\right) \\
& \times\left(k_{2 n+1}+k_{1}\right) \Phi_{1}^{2} \Phi_{2}^{2} \ldots \Phi_{2 n+1}^{2} \\
& \times\left[(2 n+1)\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right) \ldots\left(k_{2 n}+k_{2 n+1}\right)\left(k_{2 n+1}+k_{1}\right)\right]^{-1} .
\end{aligned}
$$

From the well known Abelian transformation, we have

$$
\begin{aligned}
& \sum_{r=1}^{n}\left(k_{1}^{-1}+k_{2}^{-1}+\ldots+k_{2 r}^{-1}\right)\left(k_{2 r}+k_{2 r+1}\right)=\sum_{i=1}^{n}\left(k_{2 i-1}^{-1}+k_{2 i}^{-1}\right)\left(\sum_{r=i}^{n}\left(k_{2 r}+k_{2 n+1}\right)\right) \\
& S\left(1+2 \sum_{r=1}^{n}\left(k_{1}^{-1}+k_{2}^{-1}+\ldots+k_{2 r}^{-1}\right)\left(k_{2 r}+k_{2 r+1}\right)\right)\left(k_{2 n+1}+k_{1}\right) \\
& =S\left(k_{2 n+1}+k_{1}\right)+2 S\left(k_{2 n+1}+k_{1}\right) \sum_{i=1}^{n}\left(k_{2 i-1}^{-1}+k_{2 i}^{-1}\right)\left(\sum_{r=i}^{n}\left(k_{2 r}+k_{2 r+1}\right)\right) \\
& =2 S\left(k_{1}\right)+2 S \sum_{i=1}^{n}\left[T^{2(n-i)+3}\left(k_{2 n+1}+k_{1}\right) k_{2 i-1}^{-1}\left(\sum_{r=i}^{n}\left(k_{2 r}+k_{2 r+1}\right)\right)\right. \\
& \left.+T^{2(n-i+1)}\left(k_{2 n+1}+k_{1}\right) k_{2 i}\left(\sum_{r=i}^{n}\left(k_{2 r}+k_{2 r+1}\right)\right)\right] \\
& =2 S\left(k_{1}+k_{1}^{-1} \sum_{i=0}^{n-1} \sum_{r=1}^{n-i}\left[\left(k_{2 r}+k_{2 r+1}\right)\left(k_{2 n-2 i+1}+k_{2 n-2 i+2}\right)\right.\right. \\
& \left.\left.+\left(k_{2 r-1}+k_{2 r}\right)\left(k_{2 n-2 i}+k_{2 n-2 i+1}\right)\right]\right) \\
& =2 S k_{1}\left(k_{1}+\sum_{i=0}^{n-1} \sum_{r=2}^{2 n-2 i+1} k_{r} k_{2 n-2 i+1}+\sum_{i=1}^{n-1} \sum_{r=2}^{2 n-2 i+1} k_{r} k_{2 n-2 i+2}\right. \\
& \left.+\sum_{r=2}^{2 n+1} k_{r} k_{1}+\sum_{i=0}^{n-1} \sum_{r=1}^{2 n-2 i} k_{r} k_{2 n-2 i}+\sum_{i=0}^{n=1} \sum_{r=1}^{2 n-2 i} k_{r} k_{2 n-2 i+1}\right) \\
& =2 S k_{1}^{-1}\left(\sum_{i \leqslant j} k_{i} k_{j}+\sum_{i>j} k_{i} k_{j}\right) \\
& =2\left(k_{1}^{-1}+k_{2}^{-1}+\ldots+k_{2 n+1)}^{-1}\right)\left(k_{1}+k_{2}+\ldots+k_{2 n+1}\right)^{2} \text {. }
\end{aligned}
$$

Therefore, we arrive at

$$
\begin{aligned}
-\sum_{r=0}^{n} W^{(2 r)} & V^{(2 n-2 r+1)} \\
& =[4 /(2 n+1)](-1)^{n} \operatorname{Tr}\left(B_{x x t}^{2 n+1}\right) \\
& =V_{x t}^{(2 n+1)}
\end{aligned}
$$

Next we shall show that (6) and (7) satisfy equation (4):

$$
\begin{aligned}
& \sum_{r=0}^{n-1} V_{t}^{(2 r+1)} V^{(2 n-2 r-1)} \\
&= \frac{1}{2}\left(\sum_{r=0}^{n-1} V_{t}^{(2 r+1)} V^{(2 n-2 r-1)}+\sum_{r=0}^{n-1} V^{(2 r+1)} V_{t}^{(2 n-2 r-1)}\right) \\
&= 8(-1)^{n-1} \sum_{r=0}^{n-1}\left(\sum _ { 1 } \sum _ { 2 } \ldots \sum _ { 2 n } \left[\left(k_{1}+k_{2}\right) \ldots\left(k_{2 r}+k_{2 r+1}\right)\right.\right. \\
&\left.\left.\times\left(k_{2 r+2}+k_{2 r+3}\right) \ldots\left(k_{2 n-1}+k_{2 n}\right)\right]^{-1} \Phi_{1}^{2} \Phi_{2}^{2} \ldots \Phi_{2 n}^{2}\right)_{t} \\
&= 8(-1)^{n-1}\left(\sum _ { 1 } \sum _ { 2 } \ldots \sum _ { 2 n } ^ { n - 1 } \sum _ { r = 0 } ^ { n } (k _ { 2 r + 1 } + k _ { 2 r + 2 }) \left[\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right) \ldots\right.\right. \\
&\left.\left.\times\left(k_{2 n-1}+k_{2 n}\right)\right]^{-1} \Phi_{1}^{2} \Phi_{2}^{2} \ldots \Phi_{2 n}^{2}\right)_{t} \\
&= 4(-1)^{n-1}\left[\operatorname{Tr}\left(B_{x} B^{2 n-1}\right)\right]_{x t} \\
&= W_{x}^{(2 n)} .
\end{aligned}
$$

We have proved that (6) and (7) satisfy equations (4) and (5). Therefore we obtain the solution for equations (2) in the following form:

$$
\begin{aligned}
V=4 \operatorname{Tr}\left(B_{x}\right. & \left.-B_{x} B^{2}+B_{x} B^{4}+\ldots\right) \neq 4 \operatorname{Tr}\left[B_{x}\left(1+B^{2}\right)^{-1}\right] \\
& =4\left[\operatorname{Tr}\left(\tan ^{-1} B\right)\right]_{x}
\end{aligned}=\frac{2}{\mathrm{i}}\left[\operatorname{Tr} \log \left(\frac{I+\mathrm{i} B}{I-\mathrm{i} B}\right)\right]_{x} . ~ \$
$$

$$
W=1+2\left\{\operatorname{Tr}\left[B^{2}-\frac{1}{2} B^{4}+\ldots+(-1)^{n-1} n^{-1} B^{2 n}+\ldots\right]\right\}_{x t}=1+2\left[\operatorname{Tr} \log \left(1+B^{2}\right)\right]_{x t}
$$

From $V=U_{x}$, we have

$$
\begin{equation*}
U=4 \operatorname{Tr}\left(\tan ^{-1} B\right)=\frac{2}{\mathrm{i}} \operatorname{Tr} \log \left(\frac{I+\mathrm{i} B}{I-\mathrm{i} B}\right) \tag{11}
\end{equation*}
$$

We have to show that the above U satisfy equation (1). Due to $V=U_{x}$, we have

$$
\begin{align*}
& W_{x}=V_{t} V=U_{x t} U_{x} \tag{12}\\
& W_{x x}=U_{x x t} U_{x}+U_{x t} U_{x x} .
\end{align*}
$$

Using $V_{x t}=-W V$, i.e. $U_{x x t}=-W U_{x}$ we obtain

$$
W_{x x}=-W U_{x}^{2}+U_{x i} U_{x x} .
$$

Therefore we have

$$
\begin{gathered}
\mathrm{O}=W_{x x} / U_{x}^{2}+W-U_{x} U_{x x} / U_{x}^{2}=W_{x x} / U_{x}^{2}-W_{x} U_{x x} / U_{x}^{3}+W \\
=\left(W_{x} / U_{x}\right)_{x} \frac{\mathrm{~d} X}{\mathrm{~d} U}+W=\frac{\mathrm{d}^{2} W}{\mathrm{~d} U^{2}}+W .
\end{gathered}
$$

We solve $W_{u u}+W=0$ and obtain

$$
W=C_{1} \cos U+C_{2} \sin U \quad C_{1} \text { and } C_{2} \text { constant. }
$$

From (11) we see that U is an odd function of B, but W is an even function of B. Hence W is an even function of U and $C_{2}=0$. If we let $U=0$, then from (11) $B=0$, and $C_{1}=C_{1} \cos 0=1=W$ (as $B=0$). Therefore we arrive at $W=\cos U$. Using $W_{x}=$ $V_{t} V$, we have $(\cos U)_{x}=U_{x i} U_{x}=(-\sin U) U_{x}$, i.e. $U_{x 1}+\sin U=0$. In conclusion, the U defined by (11) satisfy equation (1).

We can easily derive the Gelfand-Levitan integral equation and the eigenvalue problem associated with the sine-Gordon equation in a method similar to the MKdv equation, by replacing U by $V / 2$ [2].

The author is greatly indebted to Professor Tu Guizhang and Associate Professor Cheng Ansheng for their helpful guidance.

References

[1] Wadati M and Sawada K 1980 J. Phys. Soc. Japan 48312
[2] Wadati M and Sawada K 1980 J. Phys. Soc. Japan 48319
[3] Ohkuma K and Wadati M 1983 J. Phys. Soc. Japan 52749
[4] Zheng W 1986 Kexue Tengbae (Science Bulletin), Preprint

