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LETTER TO THE EDITOR 

The sine-Gordon equation and the trace method 

Zheng Weiming 
Shanghai Institute of Computer Technology, Shanghai, People's Republic of China 

Received 7 April 1986 

Abstract. The trace method which has been proposed by Wadati and Sawada is applied 
to the sine-Gordon equation. The N soliton solution is derived. 

The trace method which has been applied to the Kdv [l], MKdv [2], KP [3] and some 
other equations [4] is useful for understanding these equations [l] .  The N soliton 
solution and some other results of these equations have been derived through the trace 
method. 

The present letter deals with an application of the trace method to the sine-Gordon 
equation as follows: 

U,,+sin U=O U(x,  t )  + constant as x + CO. (1) 

Wadati and Sawada have pointed out that it is very difficult to solve the sine-Gordon 
equation by means of the trace method directly [2]. In order to avoid dealing with 
the transcendental non-linearity sin U, it is convenient to re-express the equation in 
terms of V = U,, W = cos U, i.e. 

v,, = - wv w, = v,v. (2) 

Substituting the formal series 

v =  v(')+ v(3)+. . .+ v(2n+1)+c..  . 
W = l +  W ( 2 ) + V ( 4 ) + . . . + W ( 2 n ) + , ,  

(3) 
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We can solve the set of equations iteratively: 

N 

v'"=4 @?(x, t )  
I =  1 

Here @, = A,(O) exp(k,x - t/4k,) = @,(x, t ) ,  k, are positive and distinct constants 
A,(O) are real or pure imaginary ( n =  1,2, .  . . , N). We introduce an N x  N 
matrix whose elements are given by B,, @,,,(y, t )@,(y ,  t )  dy = 

[ l / ( k m  + kn>l@m(~, t)@n(X, t ) .  
With the matrix B, V"), W('), and V(3) are expressed as 

V(') = 4 Tr( B,) W(') = 2Tr( B;,) V(3) = -4Tr( BxBZ). 

In general, we can prove that 

satisfy equations (4) and ( 5 ) .  First, it is easy to see that 

Tr[(B'"+'),] = (2n + 1) Tr(B,B2"). 

Therefore 

Now we make the following definitions. 
(i) CT is a cyclic transformation, a ( l , 2 , .  . . ,2n  + 1) = (2,3, . . . , 2 n  + 1 , l ) .  
(ii) T is an operator for a subscript variable, defined by T(  F(  S, , kr2 , . . . , kr2n+,)) = 

(iii) S is an order symmetry operator defined by 
F(kc,1,  k,(213 * k"(2"+J 

s= T1+ T 2 + .  . .TZfl+l. 

Obviously, we have that 
(1) S is a linear operator 
(2) S T Z S ,  T S = S  and 
(3) iff is a function of the (2n + 1)th subscript variable and T(f) =J;  then S(f) = 

From (8), we have 
(2n + 1)f and S(gf) = ( S ( g ) ) J ;  where g is a function of the subscript variable. 
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In the following we calculate the right-hand side of equation ( 5 )  and simplify the 
expression by writing 1,2, . . . , 2 n  + 1 instead of r l ,  r 2 ,  . . . , rZn+l: 

From the well known Abelian transformation, we have 

S ( 1 + 2  r:l C ( k ; ' + k ; ' + .  . . + k ~ ~ ) ( k 2 r + k 2 r + 1 ) ) ( k 2 ~ + 1 + k 1 )  

2n+1 n-1 2n-2i n = l  2n-2i  

r = 2  i = O  r = l  i=O r = l  
+ C k&1+ C krbn-zi+ krk2n-2i+l 

=2Sk;' C kikj+ kikj 

= 2(k;'+ IC;'+. . .+ kyi+l))(  kl + k2+ . . . + k2n+1)2 

( i s j  i > j  
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Therefore, we arrive at 
n - w(2r) ~ ( 2 n - 2 r + l )  

r=O 

=[4/(2n+l)](-l)" Tr(BG:') 
- v ( 2 n + l )  

xt  * 
- 

Next we shall show that (6) and (7) satisfy equation (4): 

= 4[Tr(tan-' B)], = 

W = 1 +2{Tr[B2-;B4+. . .+ (-1)"-'n-'B2" +. . .I},, = 1 +2[Tr log( 1 + B')],,. 

From V =  U,, we have 

2 
U = 4 Tr(tan-' B) = T 1 Tr log( E). 

We have to show that the above U satisfy equation (1). Due to V =  U,, we have 

w, = vtv= U,,U, (12) 

w, = u,,u, + u,,u,. 

w, = - wu:+ U,,U,. 

Using V,, = - WV, i.e. U,, = - WU, we obtain 



Letter to the Editor L489 

Therefore we have 

o= W,/Uf;+ w- u,,u,,/uI= wxx/uf;- w , u , , / u ~ +  w 
d X  

We solve W,,, + W = 0 and obtain 

W = C , c o s  U+C2sin  U C ,  and C2 constant. 

From (11) we see that U is an odd function of B, but W is an even function of B. 
Hence W is an even function of U and C2 = 0. If we let U = 0, then from (1 1) B = 0, 
and C ,  = C ,  cos 0 = 1 = W (as B = 0). Therefore we amve at W = cos U. Using W, = 
V,V, we have (cos U ) ,  = U,,U, = (-sin U )  U,, i.e. U,, + sin U = 0. In conclusion, the 
U defined by (1 1) satisfy equation (1). 

We can easily derive the Gelfand-Levitan integral equation and the eigenvalue 
problem associated with the sine-Gordon equation in a method similar to the MKdv 

equation, by replacing U by V / 2  [2]. 

The author is greatly indebted to Professor Tu Guizhang and Associate Professor 
Cheng Ansheng for their helpful guidance. 
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